

IBM Analyics Engine Library

This project is a Python library for working with the IBM Analytics Engine. The github repository for this library can be found here:

	https://github.com/snowch/ibm-analytics-engine-python

Contents:

	Examples
	Prerequisites

	Logging

	Finding your space guid

	Create Cluster

	Delete Cluster

	Get or Create Credentials

	Get Cluster Status

	List Clusters

	Jupyter Notebook Gateway

	API Docs
	Service Instance Operations

	Spark Livy Operations

	Spark SSH Operations

	Ambari Operations

	Cloud Foundry Operations

	Utility Classes

	Example notebook - Create Cluster

	Example notebook - nb2kg

Install with:

pip install --upgrade git+https://github.com/snowch/ibm-analytics-engine-python@master

NOTE: This documentation is a work-in-progress. It will be complete within the next few days/weeks. Please come back soon …

Indices and tables

	Index

	Module Index

	Search Page

Examples

This section shows example code snippets for working with this library.

Prerequisites

API Key

The lifecycle of an IBM Analytics Engine cluster is controlled through Cloud Foundry (e.g. create, delete, status operations). This python library requires an API key to work with the Cloud Foundry APIs. For more information on IBM Cloud API Keys including how to create and download an API Key, see https://console.bluemix.net/docs/iam/userid_keys.html#userapikey

Installation

Ensure you have installed this library.

Install with:

pip install --upgrade git+https://github.com/snowch/ibm-analytics-engine-python@master

Logging

Log level is controlled with the environment variable LOG_LEVEL.

You may set it programmatically in your code:

os.environ["LOG_LEVEL"] = "DEBUG"

Typical valid values are ERROR, WARNING, INFO, DEBUG. For a full list of values, see: https://docs.python.org/3/library/logging.html#logging-levels

Finding your space guid

Many operations in this library require you to specify a space guid. You can list the spaces guids for your account using this example:

from ibm_analytics_engine.cf.client import CloudFoundryAPI

cf = CloudFoundryAPI(api_key_filename='your_api_key_filename')
cf.print_orgs_and_spaces()

Alternatively, if you know your organisation name and space name, you can use the following:

from ibm_analytics_engine.cf.client import CloudFoundryAPI

cf = CloudFoundryAPI(api_key_filename='your_api_key_filename')

try:
 space_guid = cf.space_guid(org_name='your_org_name', space_name='your_space_name')
 print(space_guid)
except ValueError as e:
 # Space not found
 print(e)

Create Cluster

This example shows how to create a basic spark cluster.

from ibm_analytics_engine.cf.client import CloudFoundryAPI
from ibm_analytics_engine import IAE, IAEServicePlanGuid

cf = CloudFoundryAPI(api_key_filename='your_api_key_filename')

space_guid = cf.space_guid(org_name='your_org_name', space_name='your_space_name')

iae = IAE(cf_client=cf)

cluster_instance_guid = iae.create_cluster(
 service_instance_name='SPARK_CLUSTER',
 service_plan_guid=IAEServicePlanGuid.LITE,
 space_guid=space_guid,
 cluster_creation_parameters={
 "hardware_config": "default",
 "num_compute_nodes": 1,
 "software_package": "ae-1.0-spark",
 }
)
print('>> IAE cluster instance id: {}'.format(cluster_instance_guid))

This call blocks for several minutes. See the Get Cluster Status example
for alternative options.

status = iae.status(
 cluster_instance_guid=cluster_instance_guid,
 poll_while_in_progress=True)

print('>> Cluster status: {}'.format(status))

The above example creates a LITE cluster. See IBMServicePlanGuid for the available service plan guids.

Delete Cluster

from ibm_analytics_engine.cf.client import CloudFoundryAPI, CloudFoundryException
from ibm_analytics_engine import IAE

cf = CloudFoundryAPI(api_key_filename='your_api_key_filename')

iae = IAE(cf_client=cf)
try:
 iae.delete_cluster(
 cluster_instance_guid='12345-12345-12345-12345',
 recursive=True)

 print('Cluster deleted.')
except CloudFoundryException as e:
 print('Unable to delete cluster: ' + str(e))

Get or Create Credentials

import json
from ibm_analytics_engine.cf.client import CloudFoundryAPI
from ibm_analytics_engine import IAE

cf = CloudFoundryAPI(api_key_filename='your_api_key_filename')
iae = IAE(cf_client=cf)

vcap_json = iae.get_or_create_credentials(cluster_instance_guid='12345-12345-12345-12345')

prettify json
vcap_formatted = json.dumps(vcap_json, indent=4, separators=(',', ': '))

print(vcap_formatted)

To save the returned data to disk, you can do something like:

with open('./vcap.json', 'w') as vcap_file:
 vcap_file.write(vcap_formatted)

Get Cluster Status

To return the Cloud Foundry status:

import time
from ibm_analytics_engine.cf.client import CloudFoundryAPI
from ibm_analytics_engine import IAE

cf = CloudFoundryAPI(api_key_filename='your_api_key_filename')
iae = IAE(cf_client=cf)

while True:
 status = iae.status(cluster_instance_guid='12345-12345-12345-12345')
 if status == 'succeeded' or status == 'failed': break
 time.sleep(60)

print(status)

Alternative option to poll for the Cloud Foundry status. Note that this approach can block for many minutes while a cluster is being provisioned. While it is blocked, there is no progress output:

from ibm_analytics_engine.cf.client import CloudFoundryAPI
from ibm_analytics_engine import IAE

cf = CloudFoundryAPI(api_key_filename='your_api_key_filename')
iae = IAE(cf_client=cf)

status = iae.status(
 cluster_instance_guid='12345-12345-12345-12345',
 poll_while_in_progress=True)

print(status)

To return the Data Platform API status:

from ibm_analytics_engine.cf.client import CloudFoundryAPI
from ibm_analytics_engine import IAE

cf = CloudFoundryAPI(api_key_filename='your_api_key_filename')

iae = IAE(cf_client=cf)

vcap = iae.get_or_create_credentials(cluster_instance_guid='12345-12345-12345-12345')

status = iae.dataplatform_status(vcap)

print(status)

List Clusters

from ibm_analytics_engine.cf.client import CloudFoundryAPI
from ibm_analytics_engine import IAE

cf = CloudFoundryAPI(api_key_filename='your_api_key_filename')

space_guid = cf.space_guid(org_name='your_org_name', space_name='your_space_name')

iae = IAE(cf_client=cf)

for i in iae.clusters(space_guid=space_guid):
 print(i)

Jupyter Notebook Gateway

This is an example script for running a docker notebook that connects to the cluster using the JNBG protocol and the credentials in your vcap.json file.

#!/bin/bash

export VCAP_STR="$(cat vcap.json)"

KG_HTTP_USER=$(python -c "import json, os; print(json.loads(os.environ['VCAP_STR'])['cluster']['user'])")
KG_HTTP_PASS=$(python -c "import json, os; print(json.loads(os.environ['VCAP_STR'])['cluster']['password'])")
KG_HTTP_URL=$(python -c "import json, os; print(json.loads(os.environ['VCAP_STR'])['cluster']['service_endpoints']['notebook_gateway'])")
KG_WS_URL=$(python -c "import json, os; print(json.loads(os.environ['VCAP_STR'])['cluster']['service_endpoints']['notebook_gateway_websocket'])")

Create a directory for the notebooks so they don't disappear when the docker constainer shuts down
if [! -d notebooks]
then
 mkdir notebooks
fi

docker run -it --rm \
	-v $(pwd)/notebooks:/tmp/notebooks \
	-e KG_HTTP_USER=$KG_HTTP_USER \
	-e KG_HTTP_PASS=$KG_HTTP_PASS \
	-e KG_URL=$KG_HTTP_URL \
	-e KG_WS_URL=$KG_WS_URL \
	-p 8888:8888 \
	biginsights/jupyter-nb-nb2kg

Open a browser window to: http://127.0.0.1:8888

API Docs

A python library for working with IBM Analytics Engine

Service Instance Operations

Lifecycle operations for an IAE service instance.

	
class ibm_analytics_engine.IAE(cf_client)

	This class provides methods for working with IBM Analytics Engine (IAE) deployment operations.
Many of the methods in this calls are performed by calling the Cloud Foundry Rest API (https://apidocs.cloudfoundry.org/272/).
The Cloud Foundry API is quite abstract, so this class provides methods names that are more meaningful for those just wanting to work with IAE.

This class does not save the state from the Cloud Foundry operations - it retrieve all state from Cloud Foundry as required.

	
__init__(cf_client)

	Create a new instance of the IAE client.

	Parameters

	cf_client (CloudFoundryAPI) – The object that makes the Cloud Foundry rest API calls.

	
clusters(space_guid, short=True, status=None)

	Returns a list of clusters in the space_guid

	Parameters

	
	space_guid (str) – The space_guid to query for IAE clusters.

	short (bool, optional) – Whether to return short (brief) output. If false, returns the full Cloud Foundry API output.

	status (str, optional) – Filter the return only the provided status values.

	Returns

	If the short=True, this method returns: [(cluster_name, cluster_guid, last_operation_state), …]

The last_operation_status may be:

- in progress

- succeeded

- failed

	Return type

	list

	
create_cluster(service_instance_name, service_plan_guid, space_guid, cluster_creation_parameters)

	Create a new IAE Cluster`

	Parameters

	
	service_instance_name (str) – The name you would like for the Cluster.

	service_plan_guid (IAEServicePlanGuid) – The guid representing the type of Cluster to create.

	space_guid (str) – The space guid where the Cluster will be created.

	cluster_creation_parameters (dict) – The cluster creation parameters. An example cluster creation parameters is shown below:

{

“num_compute_nodes”: 1,

”hardware_config”: “Standard”,

”software_package”: “ae-1.0-spark”,

”customization”: [{

“name”: “action1”,

”type”: “bootstrap”,

”script”: {

“source_type”: “http”,

”script_path”: “http://path/to/your/script”

},

”script_params”: []

}]

}

	Returns

	The cluster_instance_guid

	Return type

	str

More api docs coming soon …

Spark Livy Operations

Not implemented yet.

Spark SSH Operations

Not implemented yet.

Ambari Operations

Not implemented yet.

Cloud Foundry Operations

	
class ibm_analytics_engine.CloudFoundryAPI(api_key=None, api_key_filename=None, api_endpoint='https://api.ng.bluemix.net', provision_poll_timeout_mins=30)

	

Utility Classes

IBMServicePlanGuid

	
class ibm_analytics_engine.IAEServicePlanGuid

	Service Plan Guid for IBM Analytics Engine.

	
LITE = 'acb06a56-fab1-4cb1-a178-c811bc676164'

	IBM Analytics Engine ‘Lite’ plan.

	
STD_HOURLY = '9ba7e645-fce1-46ad-90dc-12655bc45f9e'

	IBM Analytics Engine ‘Standard Hourly’ plan.

	
STD_MONTHLY = 'f801e166-2c73-4189-8ebb-ef7c1b586709'

	IBM Analytics Engine ‘Standard Monthly’ plan.

Example notebook - Create Cluster

This example uses a python library for working with an IAE instance.

IBM Analytics Engine Python Library links:

	documentation is on
readthedocs [http://ibm-analytics-engine-python.readthedocs.io/en/latest/]

	source code repository is on
github [https://github.com/snowch/ibm-analytics-engine-python]

	this notebook is on
github [https://github.com/snowch/ibm-analytics-engine-python/blob/master/docs/example_notebooks/CreateCluster.ipynb]

In []:

! pip install --quiet --upgrade git+https://github.com/snowch/ibm-analytics-engine-python@master

In []:

from ibm_analytics_engine import CloudFoundryAPI, CloudFoundryAPI
from ibm_analytics_engine import IAE, IAEServicePlanGuid, IAEClusterSpecificationExamples

We use an IBM Cloud API key to work with an IAE Instance. You can create
an API using the bluemix CLI tools, e.g.

bluemix iam api-key-create My_IAE_Key -d "This is my IAE API key" -f my_api_key.json

Alternatively, follow these
instructions [https://console.bluemix.net/docs/iam/userid_keys.html#userapikey]
to create an API key using the IBM Cloud web console and then save it in
a secure location.

In []:

cf = CloudFoundryAPI(api_key_filename='./my_api_key.json')

You aren’t restricted to just using an API key file. If you have the API
key value, you can do this:

from getpass import getpass
api_key = getpass("Enter your api key: ")

cf = CloudFoundryAPI(api_key=api_key)

In []:

Provide your organizaton name and space name:

SPACE_GUID = cf.space_guid(org_name='my_org_name', space_name='my_space_name')
print(SPACE_GUID)

If you couldn’t find your space guid, try printing out all your orgs and
spaces:

cf.print_orgs_and_spaces()

In []:

We interact with the IBM Analytics Engine through the IAE class.
Let's create an instance of it:

iae = IAE(cf_client=cf)

In []:

List the clusters in the space

iae.clusters(space_guid=SPACE_GUID)

In []:

cluster_guid = iae.create_cluster(service_instance_name = 'MY_SPARK_CLUSTER',
 service_plan_guid = IAEServicePlanGuid.LITE,
 cluster_creation_parameters = {
 "hardware_config": "default",
 "num_compute_nodes": 1,
 "software_package": "ae-1.0-spark",
 },
 space_guid = SPACE_GUID)

Alternative options for service_plan_guid:

	IAEServicePlanGuid.STD_HOURLY

	IAEServicePlanGuid.STD_MONTHLY

There are also some examples of cluster_creation_paramters in
IAEClusterSpecificationExamples class:

IAEClusterSpecificationExamples.SINGLE_NODE_BASIC_SPARK = {
 'num_compute_nodes': 1,
 'hardware_config': 'default',
 'software_package': 'ae-1.0-spark'
 }

and:

IAEClusterSpecificationExamples.SINGLE_NODE_BASIC_HADOOP = {
 'num_compute_nodes': 1,
 'hardware_config': 'default',
 'software_package': 'ae-1.0-hadoop-spark'
 }

These have been provided so you don’t have to remember the parameters
for creating a default basic cluster.

You would use them like this:

iae.create_cluster(...,
 cluster_creation_parameters = IAEClusterSpecificationExamples.SINGLE_NODE_BASIC_SPARK,
 ...)

In []:

Poll the cluster until provisioning has finished

import time
while True:
 status = iae.status(cluster_instance_guid=cluster_guid)
 print(status)
 if status == 'succeeded' or status == 'failed': break
 time.sleep(60)

In []:

Only run this cell after the previous cell has finished with the status 'succeeded',
otherwise you will receive an error trying to get or create the credentials.

import json

get the credentials data for the cluster in vcap json format
vcap = iae.get_or_create_credentials(cluster_instance_guid=cluster_guid)

print the credentials out
vcap_formatted = json.dumps(vcap, indent=4, separators=(',', ': '))
print(vcap_formatted)

save the credentials to a file
with open('./vcap.json', 'w') as vcap_file:
 vcap_file.write(vcap_formatted)

In []:

Grab the ambari console url

print(vcap['cluster']['service_endpoints']['ambari_console'])

In []:

Delete the cluster. Recursive=True will delete service bindings, service keys,
and routes associated with the service instance.

iae.delete_cluster(cluster_guid, recursive=True)

Example notebook - nb2kg

This notebook is an example of connecting a jupyter notebook to IBM
Analytics Engine (IAE) using
nb2kg [https://github.com/jupyter/kernel_gateway_demos/tree/master/nb2kg].
It is expected that you will run this notebook on a local jupyter
environment (i.e. not from DSX).

The notebook connecting to IAE is spun up in a docker container. This is
because:

	When you enable the nb2kg extension, all kernels run on the
configured Kernel Gateway, instead of on the Notebook server host.
The extension does not support local kernels. If nb2kg is installed
in your local notebook environment, it would prevent you from running
local kernels. Thus using docker prevents me from corrupting your
local notebook environment.

	Setting up a notebook environment with all the dependencies for nb2kg
can be tricky. Docker allows me to provide you with an environment
that is pre-configured.

Python is used to interact with docker because this was easier to script
in a notebook. However, if you run docker with sudo, this notebook
may not work for you.

WARNING: This project is just a demo of connecting to IAE using
nb2kg. Your mileage may vary.

In []:

! pip install --quiet docker

Load the IBM Analytics Engine (IAE) credentials. See this example
notebook for creating an IAE instance and
saving the vcap.json credentials file.

In []:

import json
vcap = json.load(open('./vcap.json'))

In []:

import docker
client = docker.from_env()
api_client = docker.APIClient()

The docker images can be quite large and take a long time to load. Here
we load the parent image and regularly print some output so you can see
what is going on.

In []:

import json

lines_processed = 0

api_client = docker.APIClient()
for line in api_client.pull('jupyter/minimal-notebook:fa77fe99579b', tag=None, stream=True):
 if lines_processed % 25 == 0:
 try:
 status = json.loads(str(line)[2:-5]) # strip quotes and newline
 if 'progressDetail' in status:
 print(status['progressDetail'])
 except:
 pass
 lines_processed += 1

I have created a custom docker environment that uses nb2kg. This
environment has been kept as simple as possible to make it easy for you
to adapt to to your own requirements.

In []:

image = client.images.build(
 path='https://github.com/snowch/docker_jupyter_notebook_kg.git',
 tag='docker_jupyter_notebook_kg')

print(image.tags)

Delete any containers hanging around from a previous run of this
notebook.

WARNING: Ensure you backup any work you want to keep before running
this command.

In []:

from datetime import datetime as dt
import dateutil.parser

for cont in client.containers.list(filters={ 'name': 'iae_nb2kg_example' }):
 created = dt.utcnow() - dateutil.parser.parse(cont.attrs['Created']).replace(tzinfo=None)
 print("Name: {} | Status: {} | Age (H:M:S): {}".format(
 cont.attrs['Name'],
 cont.attrs['State']['Status'],
 created
))
 #print(json.dumps(cont.attrs, indent=4, sort_keys=True))
 cont.kill()

Run the notebook. You may need to change the LOCAL_PORT if this port is
not free on your local machine.

Change the LOCAL_NOTEBOOKS_FOLDER to a folder on your local machine
where you want your notebooks in the ‘work’ folder to be saved.

In []:

LOCAL_PORT = 8899
LOCAL_NOTEBOOKS_FOLDER = '/Users/snowch/Desktop/notebooks'

container = client.containers.run(
 image = image,
 volumes = { LOCAL_NOTEBOOKS_FOLDER : '/home/jovyan/work' },
 ports = {str(LOCAL_PORT)+'/tcp': LOCAL_PORT},
 environment = {
 'NB_PORT': LOCAL_PORT,
 'KG_HTTP_USER': vcap['cluster']['user'],
 'KG_HTTP_PASS': vcap['cluster']['password'],
 'KG_URL': vcap['cluster']['service_endpoints']['notebook_gateway'],
 'KG_WS_URL': vcap['cluster']['service_endpoints']['notebook_gateway_websocket'],
 'KG_CONNECT_TIMEOUT': '50.0',
 'KG_REQUEST_TIMEOUT': '40.0'
 },
 detach=True,
 stdout=True,
 stderr=True,
 remove=True,
 name='iae_nb2kg_example'
)

The next cell prints the log output. Ensure there are no errors
reported.

You should see a url, e.g.

Copy/paste this URL into your browser when you connect for the first time,
 to login with a token:
 http://0.0.0.0:8899/?token=12345

Click on the url in the output to open it in your browser.

From here, you should be able to create a new notebook:

In []:

from IPython.lib import backgroundjobs as bg
jobs = bg.BackgroundJobManager()

def printlogs():
 for line in container.logs(stream=True):
 print(str(line)[2:-3]) # strip quotes and newline
 sys.stdout.flush()

jobs.new('printlogs()')
jobs.status()

finally, remove the notebook docker container

In []:

container.kill()

 Python Module Index

 i

 		 	

 		
 i	

 	
 	
 ibm_analytics_engine	

Index

 _
 | C
 | I
 | L
 | S

_

 	
 	__init__() (ibm_analytics_engine.IAE method)

C

 	
 	CloudFoundryAPI (class in ibm_analytics_engine)

 	
 	clusters() (ibm_analytics_engine.IAE method)

 	create_cluster() (ibm_analytics_engine.IAE method)

I

 	
 	IAE (class in ibm_analytics_engine)

 	
 	IAEServicePlanGuid (class in ibm_analytics_engine)

 	ibm_analytics_engine (module)

L

 	
 	LITE (ibm_analytics_engine.IAEServicePlanGuid attribute)

S

 	
 	STD_HOURLY (ibm_analytics_engine.IAEServicePlanGuid attribute)

 	
 	STD_MONTHLY (ibm_analytics_engine.IAEServicePlanGuid attribute)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 IBM Analyics Engine Library

 		
 Examples

 		
 Prerequisites

 		
 Logging

 		
 Finding your space guid

 		
 Create Cluster

 		
 Delete Cluster

 		
 Get or Create Credentials

 		
 Get Cluster Status

 		
 List Clusters

 		
 Jupyter Notebook Gateway

 		
 API Docs

 		
 Service Instance Operations

 		
 Spark Livy Operations

 		
 Spark SSH Operations

 		
 Ambari Operations

 		
 Cloud Foundry Operations

 		
 Utility Classes

 		
 IBMServicePlanGuid

 		
 Example notebook - Create Cluster

 		
 Example notebook - nb2kg

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

